流形上矢量PDE的广义MLS方法-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

流形上矢量PDE的广义MLS方法

2025.04.18

投稿:龚惠英部门:理学院浏览次数:

活动信息

报告题目 (Title):Generalized Moving Least-Squares Methods for Solving Vector-Valued PDEs on Manifolds(流形上矢量PDE的广义MLS方法)

报告人 (Speaker): 蒋诗晓 (上海科技大学)

报告时间 (Time):2025年4月19日(周六)13:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):秦晓雪

主办部门:理学院数学系

报告摘要:In this talk, we introduce the Generalized Moving Least-Squares (GMLS) method to solve the vector-valued PDEs on smooth 2D manifolds without boundaries embedded in R^3, identified with randomly sampled point cloud data. The approach formulates tangential derivatives on a submanifold as the projection of the directional derivative in the ambient Euclidean space onto the tangent space of the submanifold. One challenge of this method is that the discretization of vector Laplacians yields a matrix whose size relies on the ambient dimension. To overcome this issue, we reduce the dimension of vector Laplacian matrices by employing an appropriate projection so that the complexity of the method scales well with the dimension of manifolds rather than the ambient dimension. We also present supporting numerical examples, including eigenvalue problems, linear Poisson equations, and nonlinear Burgers' equations, to examine the numerical accuracy of the proposed method on various smooth manifolds.

黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女